Transsynaptic Tracing from Peripheral Targets with Pseudorabies Virus Followed by Cholera Toxin and Biotinylated Dextran Amines Double Labeling.

نویسندگان

  • Gustavo Arriaga
  • Joshua J Macopson
  • Erich D Jarvis
چکیده

Transsynaptic tracing has become a powerful tool used to analyze central efferents that regulate peripheral targets through multi-synaptic circuits. This approach has been most extensively used in the brain by utilizing the swine pathogen pseudorabies virus (PRV)(1). PRV does not infect great apes, including humans, so it is most commonly used in studies on small mammals, especially rodents. The pseudorabies strain PRV152 expresses the enhanced green fluorescent protein (eGFP) reporter gene and only crosses functional synapses retrogradely through the hierarchical sequence of synaptic connections away from the infection site(2,3). Other PRV strains have distinct microbiological properties and may be transported in both directions (PRV-Becker and PRV-Kaplan)(4,5). This protocol will deal exclusively with PRV152. By delivering the virus at a peripheral site, such as muscle, it is possible to limit the entry of the virus into the brain through a specific set of neurons. The resulting pattern of eGFP signal throughout the brain then resolves the neurons that are connected to the initially infected cells. As the distributed nature of transsynaptic tracing with pseudorabies virus makes interpreting specific connections within an identified network difficult, we present a sensitive and reliable method employing biotinylated dextran amines (BDA) and cholera toxin subunit b (CTb) for confirming the connections between cells identified using PRV152. Immunochemical detection of BDA and CTb with peroxidase and DAB (3, 3'-diaminobenzidine) was chosen because they are effective at revealing cellular processes including distal dendrites(6-11).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anterograde axonal tracing with the subunit B of cholera toxin: a highly sensitive immunohistochemical protocol for revealing fine axonal morphology in adult and neonatal brains.

We report an improved immunohistochemical protocol for revealing anterograde axonal transport of the subunit B of cholera toxin (CTB) which stains axons and terminals in great detail, so that single axons can be followed over long distances and their arbors reconstructed in their entirety. Our modifications enhance the quality of staining mainly by increasing the penetration of the primary anti...

متن کامل

Direct input from cochlear root neurons to pontine reticulospinal neurons in albino rat.

The cochlear root neurons (CRNs) are thought to mediate the auditory startle reflex (ASR) in the rat, which is widely used as a behavioral model for the investigation of the sensorimotor integration. CRNs project, among other targets, to the nucleus reticularis pontis caudalis (PnC), a major component of the ASR circuit, but little is known about the organization of this projection. Thus, we in...

متن کامل

Multiple neuroanatomical tracing in primates.

The present report deals with a multiple tract-tracing procedure in non-human primates enabling the simultaneous visualization of retrogradely transported Fluoro-Gold (FG) and cholera toxin B subunit (CTB) in combination with anterogradely transported biotinylated dextran amine (BDA). Two issues have played key roles on the achievement of this reliable procedure: first, the recent development o...

متن کامل

Telencephalic projections to the nucleus of the basal optic root and pretectal nucleus lentiformis mesencephali in pigeons.

In birds, the nucleus of the basal optic root (nBOR) of the accessory optic system (AOS) and the pretectal nucleus lentiformis mesencephali (LM) are involved in the analysis of optic flow and the generation of the optokinetic response. In several species, it has been shown that the AOS and pretectum receive input from visual areas of the telencephalon. Previous studies in pigeons using anterogr...

متن کامل

Brain afferents to the lateral caudal ventrolateral medulla: a retrograde and anterograde tracing study in the rat.

The ventrolateral medulla (VLM) modulates autonomic functions, motor reactions and pain responses. The lateralmost part of the caudal VLM (VLMlat) was recently shown to be the VLM area responsible for pain modulation. In the present study, the brain sources of VLMlat afferent fibers were determined by tract-tracing techniques. Following injection of cholera toxin subunit B into the VLMlat, retr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of visualized experiments : JoVE

دوره 103  شماره 

صفحات  -

تاریخ انتشار 2015